Umweltbundesamt Referat Z 6 Dessau-Roßlau

Überprüfung der methodischen Grundlagen zur Bestimmung der Methanbildung in Deponien – Ergebnisse eines UFOPLAN-Vorhabens

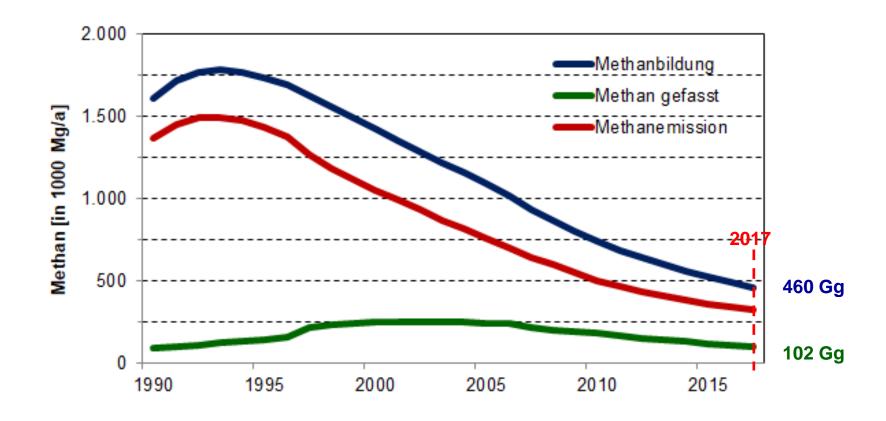
Dr.-Ing. Kai-Uwe Heyer Prof. Dr.-Ing. Rainer Stegmann

IFAS - Ingenieurbüro für Abfallwirtschaft *Prof. R. Stegmann und Partner*Schellerdamm 19 - 21
21079 Hamburg Dipl.-Chem. Rolf Schneider Prof. Dr.-Ing. Gerhard Rettenberger Ingenieurgruppe RUK GmbH Auf dem Haigst 21

70597 Stuttgart

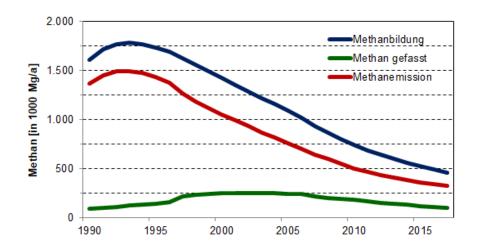
Überprüfung der methodischen Grundlagen zur Bestimmung der Methanbildung in Deponien

- Nationaler Inventarreport, Anlass zur Überprüfung
- Gasbildungspotenziale und Kennwerte zur Kinetik der Gasbildung
- Auswertungen zum Gashaushalt von Deponien im UFOPLAN-Vorhaben
- Schlussfolgerungen, Ausblick



Auswirkungen abfallwirtschaftlicher Maßnahmen auf die Bildung und Emission von Deponiegas

Bisher im NIR:



Nationaler Inventarbericht Deutschland – 2019 Kap. 7.2 Abfalldeponierung

	NIR Aktuell Gefasste Gasmenge in Gg							
Jahr	Gasbildung in Gg	Ablagerungs- u. Stillegung- sphase	Nachsorge- phase	Gesamt- menge	Erfassungs- rate in %			
1990	1614			94	5,8			
1991	1715			105	6,1			
1992	1772			115	6,5			
1993	1787			125	7,0			
1994	1770			136	7,7			
1995	1738			146	8,4			
1996	1690			160	9,5			
1997	1629			222	13,6			
1998	1559			242	15,5			
1999	1490			247	16,6			
2000	1423			251	17,6			
2001	1353			252	18,7			
2002	1288			254	19,7			
2003	1222			254	20,8			
2004	1158	236	11	247	21,3			
2005	1094			247	22,6			
2006	1018	231	11	242	23,8			
2007	937			220	23,5			
2008	865	190	11	201	23,2			
2009	800			191	23,8			
2010	741	171	11	181	24,4			
2011	689			167	24,2			
2012	641	140	14	154	24,0			
2013	598			143	24,0			
2014	559	121	13	134	24,0			
2015	523			120	23,0			
2016	490	97	11	108	22.1			
2017	460			102	22,1			

Methanfassung auf Deponien

Tabelle 455:

Fragen:

- Wieviel Methan wird tatsächlich noch auf Deutschlands Deponien gebildet? (Nenner Gaserfassungsgrad)
- Mit welchen Parametern kann man diese Methanbildung möglichst realistisch quantifizieren?

kursiv: Daten des Statistischen Bundesamtes Statistisches Bundesamt (FS 19

August 2016

Überprüfung der methodischen Grundlagen zur Bestimmung der Methanbildung in Deponien

- Nationaler Inventarreport, Anlass zur Überprüfung
- Gasbildungspotenziale und Kennwerte zur Kinetik der Gasbildung
- Auswertungen zum Gashaushalt von Deponien im UFOPLAN-Vorhaben
- Schlussfolgerungen, Ausblick

Methane calculation from type of materia

Wood

		Ivational
		values
DOC	DOC	0,430
DOCf	DOCf	0,500
Half-life time (t _{1/2}):	h	23,0
Decay rate constant	k = ln(2)/h	0,0
exp1	exp(-k)	0,97
Process start in deposition year. Month M	M	10,00
exp2	exp(-k*(13-M/12))	0,99
Fraction to CH4	F	0,490

		,	Dissimilable	DDOC not		DDOC	,	,
			DOC	reacted.	DDOC lost.	accumulated		
	Amount		(DDOC)	Deposition	Deposition	in SWDS end		Methane
Year	deposited	MCF	deposited	vear	vear	of year	DDOC lost	formed
			D = A * DOC *	7	C = D * (1-	H = B + (H _{lest year} *	E = C + H * (1 -	
	Α	MCF	DOCf * MCF	B = D * exp2	exp2)	exp1)	exp1)	* F
	Gg	fraction	Gg	Gg	Gg	Gg	Gg	Gg
1997	1.457	1,00	313	311	2	5.476	160	105
1998	1.292	1,00	278	276	2	5.589	165	108
1999	1.228	1,00	264	262	2	5.685	168	110
2000	1.037	1,00	223	221	2	5.738	170	111
2001	1.220	1,00	262	260	2	5.828	172	113
2002	860	1,00	185	183	1	5.838	174	114
2003	709	1,00	153	151	1	5.816	174	114
2004	529	1,00	114	113	1	5.756	174	113
2005	238	1,00	51	51	0	5.636	171	112
2006	10	1,00	2	2	0	5.471	167	109
2007	11	1,00	2	2	0	5.311	162	106
2008	5	1,00	1	1	0	5.154	158	103
2009	1	1,00	0	0	0	5.002	153	100
2010	0	1.00	0	0	0	4.853	148	97
2011	0	1,00	0	0	0	4.709	144	94
2012	3	1.00	1	1	0	4.570	140	91
2013	3	1,00	1	1	0	4.435	136	89
2014	0	1.00	0	0	0	4.303	132	86
2015	0	1,00	0	0	0	4.176	128	83
2016	0	1.00	ō	ō	0	4.052	124	81
2017	0	1,00	0	0	0	3.931	120	79
2018	0	1.00	Ö	Ö	0	3.815	117	76
2019	0	1.00	0	0	0	3.701	113	74
2020	0	1.00	ŏ	Ŏ	0	3.591	110	72
. 0	0		, ,			2 AOE		70
H /	Activity / I	Deponieg	as / Paramet	ters / Result	s ZSE / F	lalf-life MCF	Food / Gard	len / Paper

IPCC-Modell

CH_4 generated_T = DDOCma_{T-1} * (1 - e^{-k}) * F * 16/12

DDOCma_{T-1} = zum Ende des Jahres T-1 im Deponiekörper vorhandenes DDOCm [Gg] mit DDOCm = Kohlenstoff, der unter den in der Deponie herrschenden Bedingungen

zersetzt wird [Gg]

k = Abbaukonstante $[1/a] = \ln(2) / t_{1/2}$ mit $t_{1/2} = \text{Halbwertszeit } [a]$

F = Methankonzentration im gebildeten Deponiegas [-] (0,5)

16/12 = Molekulargewichtsverhältnis CH_4/C [-]

T = Jahr, für das die Kalkulation durchgeführt wird

DDOCm = W * DOC * DOC_f * MCF

W = Masse des deponierten Abfalls [Gg Abfall]

DOC = Anteil abbaubarer organischer Kohlenstoff im deponierten Abfall

[Gg C / Gg Abfall]

DOC_f = Anteil DOC, der in der Deponie anaerob zersetzt wird [-]

MCF = Methan-Korrektur-Faktor [-]; 1 - MCF = Anteil DOC, der (im Ablagerungsjahr)

aerob abgebaut wird

Organikhaltige Fraktionen und bisher im deutschen NIR für die Halbwertszeit, den DOC und den DOC_f angesetzten Werte

Abfallfraktion		Ansatz im d	eutschen NIR	
	DOC	DOC _f	Halbwerts- zeit Jahre	k-Wert
	MgC/MgFM	-	danie	1/a
Organik (Food waste)	0,18 (ab NIR 2019: 0,15)	0,5	4	0,173
Garten- und Parkabfälle (Garden)	0,2	0,5	7	0,099
Papier und Pappe (Paper)	0,4	0,5	12	0,058
Holz (und Stroh) (Wood and	0,43	0,5	23	0,030
straw)				
Textilien (Textiles)	0,24	0,5	12	0,058
Windeln (Disposable nappies)	0,24	0,5	12	0,058
Klärschlamm (Sewage sludge)	0,15	0,5	4	0,173
Verbund- materialien	0,1	0,5	12	0,058
MBA-Abfälle	0,023	0,5	12	0,058

MCF bisher 1,0

Quantifizierung der Methanbildung Bisher im NIR:

Year	Food	Garden	Paper	Wood	Textile & Nappies	Composites	Sludge	MBA output	Total	Methane recovery	Metha
	Α	В	С	D	Е	F	G	Н	1	J	J = (G-H OX)
	Gg	Gg	Gq	Ga	Gg	Gg	Gg	Gg	Gq	Gg	Gg
1988	577	0	575	53	49	41	245	0,00	1.541		
1989	580	0	587	55	54	44	244	0,00	1.565		
1990	601	0	605	59	61	49	238	0,00	1.614		
1991	660	0	637	69	73	57	220	0,00	1.715		
1992	686	0	658	77	84	64	203	0,00	1.772	113	
1993	685	0	669	85	92	69	187	0,00	1.787	123	
1994	666	0	672	92	98	72	170	0,00	1.770		
1995	639	0	670	98	102	74	153	0,00	1.738		
1996	607	0	664	103	106	74	136	0,00	1.690		
1997	568	2	652	107	109	73	119	0,00	1.629		
1998	527	3	636	110	109	71	104	0,00	1.559		
1999	487	4	618	112	110	69	91	0,00	1.490		
2000	446	6	599	114	112	66	81	0,04	1.423		
2001	406	6	576	115	116	64	71	0,24	1.353		
2002	369	5	555	116	118	61	63	0,62	1.288		
2003	333	5	532	116	119	59	56	1,10	1.222	248	
2004	299	5	510	116	120	56	50	1,50	1.158		
2005	267	5	488	114	118	53	47	1,86	1.094		
2006	230	4	463	112	113	51	43	2,26	1.018		
2007	194	4	437	108	107	48	37	2,65	937		
2008	163	4	413	105	101	45	31	3,0	865		
2009	137	4	389	102	95	43	26	3,40	800		
2010	115	3	368	99	90	40	22	3,67	741		
2011	97	3	347	96	85	38	19	3,89	689		
2012	82	3	328	93	80	36	16	4,05	641		
2013	69	2	309	90	76	34	13	4,15	598		
2014	58	2	292	88	71	32	11	4,21	559		
2015	49	2	276	85	67	30	10	4,28	523		
2016	41	2	260	83	64	28	8	4,34	490		
2017	34	2	246	80	60	27	7	4,36	460	102	
2018											
2019											
2020											
2021											
2022											
2023											
2024											
2025											
2026											

Methanbildungspotenziale L₀ im internationalen Vergleich

Umwelt **†** Bundesamt

Tabelle 10: Defaultwerte zum Methanbildungspotenzial verschiedener Länder zum Nationalen Inventarbericht (Angaben von 2014)

Land	DOC	$\mathrm{DOC}_{\mathrm{f}}$	MCF	F	$\mathbf{L_0}$
	MgC/MgFM		-	_	m³CH ₄ /MgFM
Australien	134	variiert	1	0,5	78
Österreich	160	0,55	1	0,55	90
Bulgarien	110	0,5	1	0,5	51
Canada	172	0,6	1	0,5	96
Kroatien	157	0,55	0,89	0,5	72
Tschechien	193	0,5	1	0,55	99
Dänemark	113	0,5	1	0,41	45
Finnland	177	0,5	1	0,5	82
Deutschland	261	0,5	1	0,5	122
Griechenland	148	0,6	1	0,5	83
Ungarn	160	0,5	1	0,5	74
Irland	175	0,6	1	0,5	98
Italien	189	0,5	1	0,5	88
Luxemburg	180	0,5	1	0,5	84
Polen	123	0,5	1	0,5	57
Portugal	148	0,6	1	0,5	83
Rumänien	118	0,55	1	0,5	61
Slovakei	120	0,6	1	0,5	67
Spanien	134	0,5	1	0,5	62
Türkei	150	0,77	1	0,5	108
England	133	0,5	1	0,5	62
USA	203	0,5	1	0,5	100

Überprüfung der methodischen Grundlagen zur Bestimmung der Methanbildung in Deponien

- Nationaler Inventarreport, Anlass zur Überprüfung
- Gasbildungspotenziale und Kennwerte zur Kinetik der Gasbildung
- Auswertungen zum Gashaushalt von Deponien im UFOPLAN-Vorhaben
 - Fachliteratur
 - Untersuchungen an Deponien
 - Laborversuche
- Schlussfolgerungen, Ausblick

Methane calculation from type of material

Wood

M Activity

National values DOC 0,430 DOC DOCf DOCf 0,500 Half-life time (t_{1/2}): 23,0 0,0 Decay rate constant k = ln(2)/h0,97 exp1 exp(-k) Process start in deposition year. Month M 10,00 0,99 exp(-k*(13-M/12) Fraction to CH4 0,490

Bisherige IPCC / NIR - Vorgaben Gasbildungspotenzial Holz:

215 kg *<u>1,868</u>

= 401 m³ Deponiegas /Mg FM

Umwelt 😚 Bundesamt

Fachliteratur: 21 – 114 m³/ Mg FM

(max. 254 m³/ Mg FM)

Sowie <u>längere</u> Halbwertszeiten

								•
			Dissimilable	DDOC not		DDOC		
			DOC	reacted.	DDOC lost.	accumulated		
	Amount		(DDOC)	Deposition	Deposition	in SWDS end		Methane
Year	deposited	MCF	deposited	year	year	of year	DDOC lost	formed
			D = A * DOC *		C = D * (1-	H = B + (H _{last year} *	E = C + H * (1 -	
	Α	MCF	DOCf * MCF	B = D * exp2	exp2)	exp1)	exp1)	* F
	Gg	fraction	Gg	Gg	Gg	Gg	Gg	Gg
1					· -			
1997	1.457	1,00	313	311	2	5.476	160	105
1998	1.292	1,00	278	276	2	5.589	165	108
1999	1.228	1,00	264	262	2	5.685	168	110
2000	1.037	1,00	223	221	2	5.738	170	111
2001	1.220	1,00	262	260	2	5.828	172	113
2002	860	1,00	185	183	1	5.838	174	114
2003	709	1,00	153	151	1	5.816	174	114
2004	529	1,00	114	113	1	5.756	174	113
2005	238	1,00	51	51	0	5.636	171	112
2006	10	1,00	2	2	0	5.471	167	109
2007	11	1,00	2	2	0	5.311	162	106
2008	5	1,00	1	1	0	5.154	158	103
2009	1	1,00	0	0	0	5.002	153	100
2010	0	1,00	0	0	0	4.853	148	97
2011	0	1,00	0	0	0	4.709	144	94
2012	3	1,00	1	1	0	4.570	140	91
2013	3	1,00	1	1	0	4.435	136	89
2014	0	1,00	0	0	0	4.303	132	86
2015	0	1,00	0	0	0	4.176	128	83
2016	0	1,00	0	0	0	4.052	124	81
2017	0	1,00	0	0	0	3.931	120	79
2018	0	1,00	0	0	0	3.815	117	76
2019	0	1,00	0	0	0	3.701	113	74
2020	0	1,00	0	0	0	3.591	110	72
<u> </u>	9	1.00		0	مَ		107	70

Deponiegas Parameters Results ZSE Half-life MCF Food Garden Paper

Methane calculation from type of material

Dissimilable

DOC

(DDOC)

deposited

DDOC not

reacted.

Deposition

Paper

Amount

1.095

426

200

2006

2007

Year deposited

MCF

		National values
DOC	DOC	0,400
DOCf	DOCf	0,500
Half-life time (t _{1/2}):	h	12,0
Decay rate constant	k = ln(2)/h	0,1
exp1	exp(-k)	0,94
Process start in deposition year. Month M	M	10,00
exp2	exp(-k*(13-M/12))	0,99
Fraction to CH4	F	0,490

DDOC lost

Deposition

year

DDOC

accumulated

in SWDS end

of year

13.591

13.020

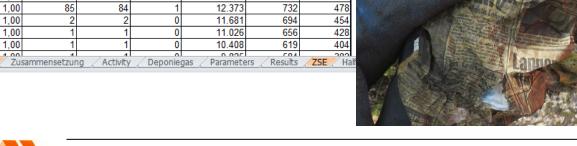
12.373

200 kg * 1,868

= 373 m³ Deponiegas /Mg FM

Fachliteratur: 126 - 242 m³/ Mg FM

D = A * DOC C = D * (1-Q = E * 16/12 DOCf * MCF B = D * exp2 exp2) exp1) exp1) Gg fraction Gg Gg Gg Gg Gg 5.902 0.97 1.145 1.129 16 14.450 809 541 552 1986 5.910 0.97 1.148 1.132 16 14.771 827 1987 5.918 0.97 1.151 1.135 17 15.077 846 6.030 0.97 1.173 1.156 17 15.387 863 564 6.133 0,97 1.194 1.177 15.700 881 575 1990 593 9.095 1,00 1.819 1.793 26 16.612 907 199 1.00 1.577 1.554 23 17.233 955 624 7.883 19 644 6.710 1.00 1.342 1.323 17.589 986 5.577 1.00 1.115 1.099 16 17.701 1.003 655 1994 658 4.966 1,00 993 979 14 17.686 1.008 199 874 657 4.372 1,00 862 13 17.556 1.005 651 3.634 1,00 727 716 10 17.287 996 639 1997 2.807 1,00 561 553 16.870 978 623 1998 2.327 1,00 465 459 16.382 953 605 477 470 926 2.385 1,00 15.932 2000 284 280 587 1.421 1,00 15.318 898 565 200 1.549 1,00 310 305 14.764 864 544 2002 1.191 1.00 238 235 14.170 832 522


216

192

Sowie kürzere Halbwertszeiten

798

766

732

500

Methane

DDOC lost

1.00

1,00

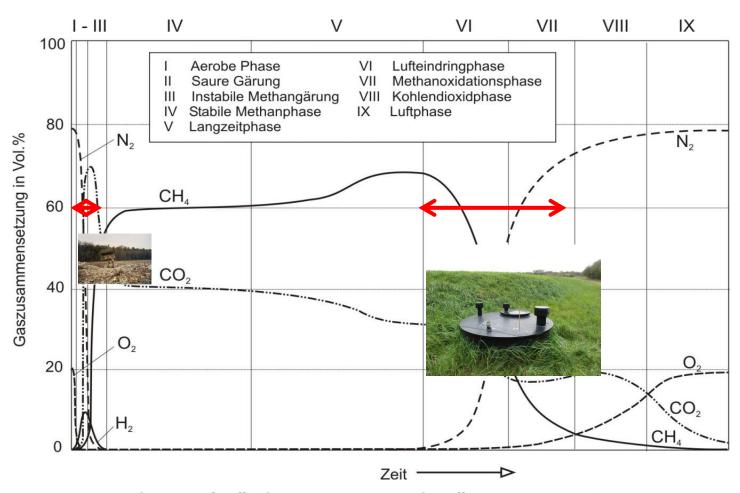
1,00

219

195

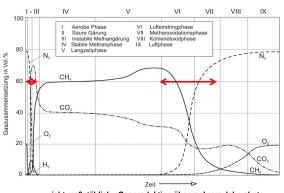
Vergleich der bisher im deutschen NIR für die Halbwertszeit, den DOC und den DOC_f angesetzten Werte, Vorschlag zur Anpassung zur genaueren Abschätzung der Methanemissionen von Deponien

Abfallfraktion		Ansatz im d	eutschen NIR		Vors	chlag modi	fizierter Ans	atz
	DOC	DOC _f	Halbwerts- zeit Jahre	k-Wert	DOC	DOC _f	Halbwerts -zeit Jahre	k-Wert
	MgC/MgFM	-		1/a	MgC/MgFM	-		1/a
Organik (Food waste)	0,18 (ab NIR 2019: 0,15)	0,5	4	0,173	0,15	0,5	4	0,173
Garten- und Parkabfälle (Garden)	0,2	0,5	7	0,099	0,2	0,5	7	0,099
Papier und Pappe (Paper)	0,4	0,5	12	0,058	0,4	0,5	7	0,099
Holz (und Stroh) (Wood and straw)	0,43	0,5	23	0,030	0,43	0,1	50	0,014
Textilien (Textiles)	0,24	0,5	12	0,058	0,24	0,5	12	0,058
Windeln (Disposable nappies)	0,24	0,5	12	0,058	0,24	0,5	12	0,058
Klärschlamm (Sewage sludge)	0,15	0,5	4	0,173	0,15	0,5	4	0,173
Verbund- materialien	0,1	0,5	12	0,058	0,1	0,5	12	0,058
MBA-Abfälle	0,023	0,5	12	0,058	0,023	0,5	12	0,058



Einfluss der aeroben Abbauprozesse Methankorrekturfaktor MCF = 1?

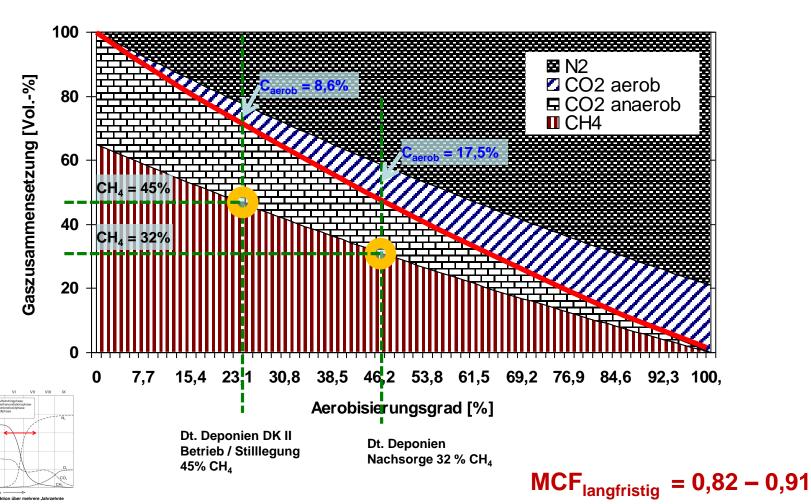
nicht maßstäblich - Gasproduktion über mehrere Jahrzehnte


Aerober Kohlenstoffabbau zu Beginn der Ablagerung

Faktor Gasprognosemodell Weber (Literatur Bogon, 2005):

fa0 Anfangszeitfaktor; Berücksichtigung der Gasverluste im ersten halben Jahr nach erfolgter Ablagerung durch aerobe Umsetzung

- 0,95 [-] schneller Aufbau (für Kippkantenbetrieb)
- 0,8 [-] langsamer Aufbau (für Dünnschichteinbau)



Aerober Kohlenstoffabbau langfristig bei Ablagerung

Ingenieurgruppe

Anpassung Faktor MCF

MCF = MCF_{Beginn} + MCF_{langfristig}

(Literaturauswertung und Auswertung Daten/Deponien)

Jüngere Deponien (überwiegend Dünnschichteinbau, derzeit in der Stilllegungsphase):

MCF statt 1 nun 0,80 (0,71 – 0,86)

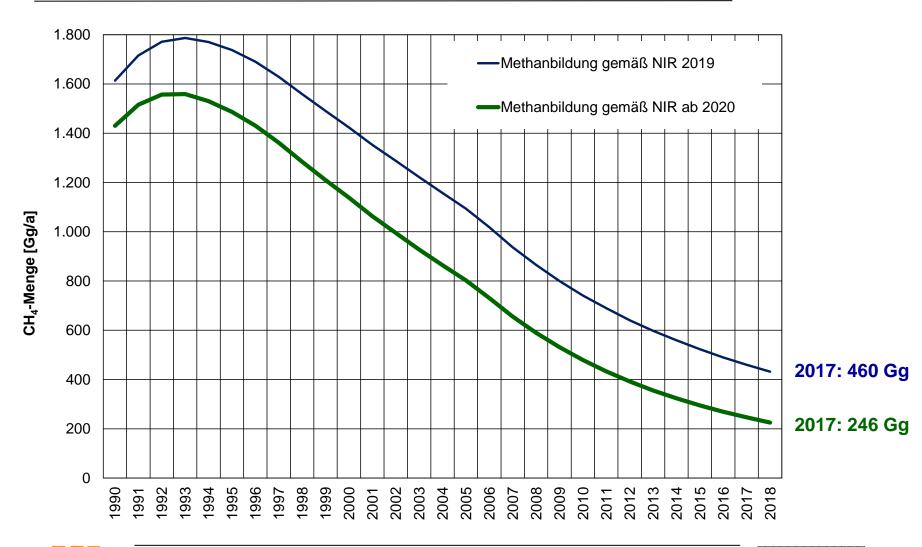
Ältere Deponien (überwiegend Kippkantenbetrieb, derzeit in der Nachsorgephase):

MCF statt 1 nun 0,75 (0,62 – 0,77)

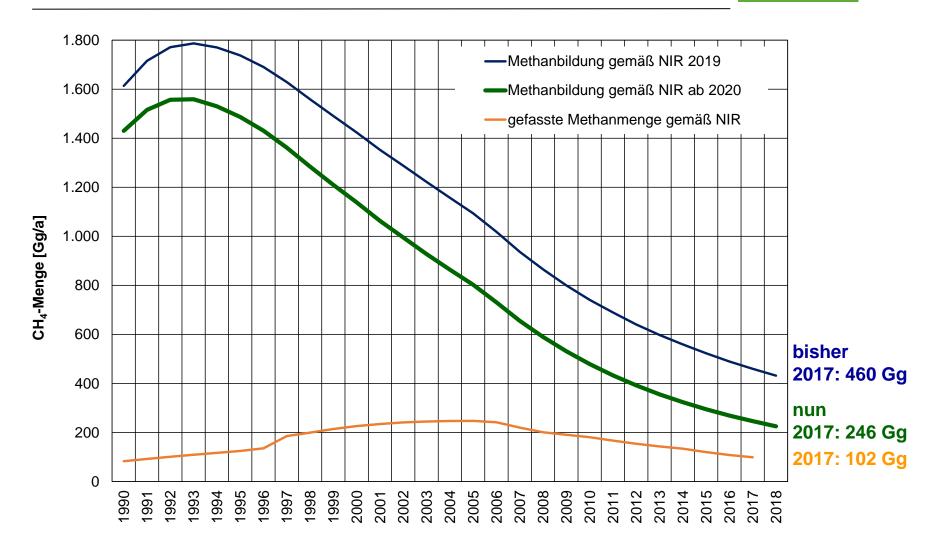
Vorschlag für NIR: statt bisher 1,0 nun zumindest Reduzierung auf 0,9

Überprüfung der methodischen Grundlagen zur Bestimmung der Methanbildung in Deponien

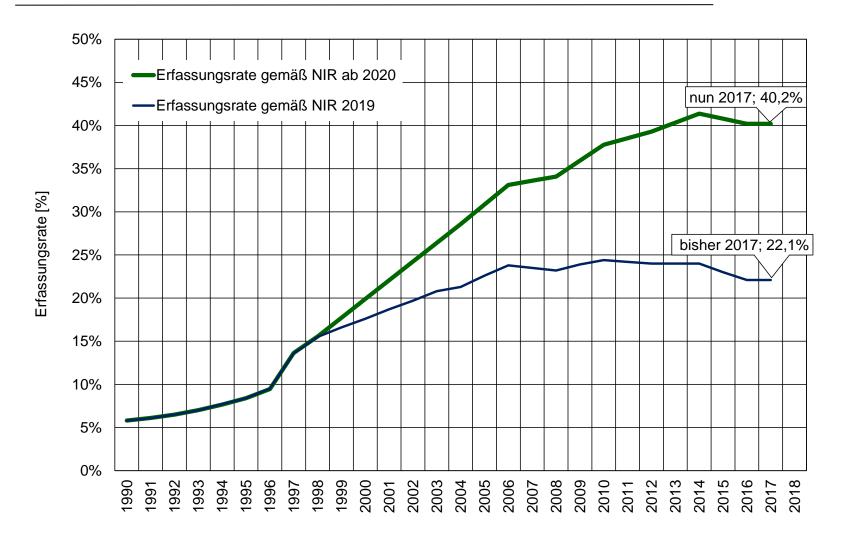
- Nationaler Inventarreport, Anlass zur Überprüfung
- Gasbildungspotenziale und Kennwerte zur Kinetik der Gasbildung
- Auswertungen zum Gashaushalt von Deponien im UFOPLAN-Vorhaben
- Schlussfolgerungen, Ausblick



Jährliche Methanbildung aller deutschen Deponien gemäß bisherigem Ansatz im NIR und mit modifiziertem Parametersatz



Jährliche Methanbildung aller deutschen Deponien gemäß bisherigem Ansatz im NIR und mit modifiziertem Parametersatz im Vergleich zur jährlich gefassten Methanmenge



Entwicklung der Gaserfassungsgrade aller deutschen Deponien gemäß bisherigem Ansatz im NIR und mit modifiziertem Parametersatz ab 1990

Schlussfolgerungen

Modifizierte Parameter zur Gasprognose und Abfallfeststoffuntersuchungen an allen untersuchten Deponien zeigen, dass das Deponierestgaspotenzial bereits deutlich geringer ist, als es nach bisherigen Ansätzen / Parametern im NIR berechnet wird.

Ein beträchtlicher Anteil des bioverfügbaren Kohlenstoffs wird in der Deponie nicht anaerob, sondern zunehmend aerob abgebaut, was im NIR / IPCC-Ansatz mit dessen Default-Werten (MCF = 1) bisher nicht hinreichend berücksichtigt wurde.

Schlussfolgerungen

Zur realistischeren Abbildung des Methanbildungspotenzials und der Methanbildung in Deponien können daher für die einzelnen organikhaltigen Abfallfraktionen (vor allem PPK, Holz) insbesondere folgende Parameter angepasst werden:

- DOC_f
- Halbwertszeit
- MCF

Ausblick, der schnell Gegenwart werden sollte

Ein im Ergebnis der Vorhabens (rechnerisch) verbesserter Gaserfassungsgrad zeigt dennoch, dass bei vielen Abfallablagerungen weiterhin Handlungsbedarf zur verbesserten Erfassung und Verwertung/Behandlung von Deponiegas und/oder Belüftung besteht.

Dazu stehen die NKI-Förderprogramme zur Verfügung:

- Optimierung der Gasfassungssysteme zur Steigerung des Gasfassungsgrads und der Gasverwertung, neu seit 2019
- damit gut kombinierbar: Deponiebelüftung, seit 2013

Umweltbundesamt Referat Z 6 Dessau-Roßlau

Überprüfung der methodischen Grundlagen zur Bestimmung der Methanbildung in Deponien – Ergebnisse eines UFOPLAN-Vorhabens

Bei Fragen zum UFOPLAN-Vorhaben:

Dr.-Ing. Kai-Uwe Heyer

Prof. Dr.-Ing. Rainer Stegmann

Tel. 040 / 77 11 07 42

Email: Heyer@ifas-hamburg.de

IFAS - Ingenieurbüro für Abfallwirtschaft *Prof. R. Stegmann und Partner*Schellerdamm 19 - 21
21079 Hamburg

